Markscheme

May 2016

Physics

Higher level

Paper 3

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Subject Details: Physics HL Paper 3 Markscheme

Mark Allocation

Candidates are required to answer ALL questions in Section A [15 marks] and all questions from ONE option in Section B [30 marks]. Maximum total = [45 marks].

1. Each row in the "Question" column relates to the smallest subpart of the question.
2. The maximum mark for each question subpart is indicated in the "Total" column.
3. Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
4. A question subpart may have more marking points than the total allows. This will be indicated by "max" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
5. An alternative wording is indicated in the "Answers" column by a slash ($/$). Either wording can be accepted.
6. An alternative answer is indicated in the "Answers" column by "OR" between the alternatives. Either answer can be accepted.
7. Words in angled brackets «" in the "Answers" column are not necessary to gain the mark.
8. Words that are underlined are essential for the mark.
9. The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.

Section A

Question			Answers	Notes	Total
1	a		smooth curve passing through all error bars		1
	b		$\begin{aligned} & x=2.5 \text { «cm» } \pm 0.2 \mathrm{~cm} \text { AND } \Delta x=0.5 \mathrm{~cm} \pm 0.1 \mathrm{~cm} \\ & \text { « } \frac{0.5}{2.5}=» 20 \% \checkmark \end{aligned}$	Accept correctly calculated value from interval 15 \% to 25%.	2

| Question | | Answers | Notes | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | \mathbf{c} | ii | ALTERNATIVE 1
 t^{-1} from $0.025 \mathrm{~s}^{-1}$ to $0.04 \mathrm{~s}^{-1} \checkmark$
 giving t from 25 to $40 \checkmark$ | Do not allow ECF from MP1
 to MP2. |
| ALTERNATIVE 2
 the data do not support the hypothesis \checkmark
 any relevant support for the suggestion, eg straight line cannot be fitted through the error
 bars and the origin \checkmark | $\mathbf{2}$ | | | |

Question			Answers	Notes	Total
2	a	i	refractive index $=1.5 \checkmark$	Both correct value and 2SF required for [1].	1
	a	ii	$\begin{aligned} & \text { fractional uncertainty } x_{3}-x_{1}=\frac{0.04}{1.15}=0.035 \text { AND } x_{3}-x_{2}=\frac{0.04}{0.76}=0.053 \\ & \text { sum of fractional uncertainty }=0.088 \checkmark \\ & \text { «uncertainty }=\text { their } \mathrm{RI} \times 0.088 »=0.1 \checkmark \end{aligned}$	Accept correct calculation using maximum and minimum values giving the same answer.	3
	b	i	systematic error \checkmark	Accept "zero error/offset".	1
	b	ii	calculated refractive index is unchanged \checkmark because both numerator and denominator are unchanged \checkmark	Accept calculation of refractive index with 0.05 subtracted to each x value.	2
	c		numerator and denominator will be 10 times larger so refractive index is unchanged \checkmark relative/absolute uncertainty will be smaller \checkmark	"Constant material" is not enough for MP1.	2

Section B

Option A - Relativity					
Question			Answers	Notes	Total
3	a		not being accelerated OR not subject to an unbalanced force OR where Newton's laws apply \downarrow		1
	b	i	$c \checkmark$		1
	b	ii	$c+v \checkmark$		1

| 4 | Y measures electrostatic repulsion only \checkmark
 protons are moving relative to X «but not Y » OR protons are stationary relative to $Y \checkmark$
 moving protons create magnetic fields around them according to $X \checkmark$
 X also measures an attractive magnetic force OR relativistic/Lorentz effects also
 present \checkmark | | |
| :--- | :--- | :--- | :--- | :--- |

Question			Answers	Notes	Total
5	a		ALTERNATIVE 1 $\begin{aligned} & \text { «rest mass }=0.511 \mathrm{MeV} \mathrm{c}^{-2} » \gamma=\frac{2.30}{0.511}=4.50 \\ & v=c \sqrt{\frac{\gamma^{2}-1}{\gamma^{2}}} \text { OR } 3 \times 10^{8} \times\left(\frac{4.50^{2}-1}{4.50^{2}}\right)^{\frac{1}{2}} \checkmark \\ & 0.9750 c \checkmark \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & \gamma=« \frac{1}{\sqrt{1-0.98^{2}}} \Rightarrow>5.0 \checkmark \\ & E=« \gamma m_{0} c^{2}=» 4.1 \times 10^{-13} \mathrm{~J} \checkmark \\ & E=2.6 \mathrm{MeV} \checkmark \end{aligned}$	Must see answer to at least $3 S F$.	3
	b	I	$\begin{aligned} & \text { distance }=\frac{0.800}{\gamma} \\ & 0.178 \mathrm{~m} \checkmark \end{aligned}$	Accept 0.159 for $\gamma=5.0$.	2

Question			Answers	Notes	Total
5	b	ii	$\begin{aligned} & \text { time }=\frac{0.800}{2.94 \times 10^{8}} \\ & 2.74 \text { ns } \checkmark \end{aligned}$		2
	b	iii	$\begin{aligned} & \frac{2.74}{4.5} \text { OR } \frac{0.178}{2.94 \times 10^{8}} \\ & 0.608 \mathrm{~ns} \checkmark \end{aligned}$		2
	b	iv	it is measured in the frame of reference in which both events occur at the same position OR it is the shortest time interval possible \checkmark		1

Question		Answers	Notes	Total
$\mathbf{7}$	\mathbf{a}	region of space with extreme/very large curvature of spacetime \checkmark such that light cannot escape the region $\boldsymbol{O R}$ escape speed within region is $>c \checkmark$	Do not allow "large" or omission of degree of curvature.	
\mathbf{b}	time for 1 second spacecraft tick in observer frame $=1.07 \mathrm{~s} \checkmark$ $1.07=\frac{1.00}{\sqrt{1-\frac{R_{\mathrm{S}}}{2.3 \times 10^{4}}}}$ OR $R_{\mathrm{S}}=2.96 \times 10^{3} \mathrm{~m} \checkmark$ $M=« \frac{c^{2} \times 2.96 \times 10^{3}}{2 \times 6.67 \times 10^{-11}}=» 2.0 \times 10^{30} \mathrm{~kg} \checkmark$			
$\mathbf{2}$				

Option B - Engineering physics					
Question			Answers	Notes	Total
8	a		because $M g$ and N act through the axis OR only F has a non-zero lever arm «about the axis»		1
	b	i	ALTERNATIVE 1 use of Newton's law for linear motion: $M g \sin \theta-F=M a \checkmark$ use of Newton's law for rotational motion: $F R=I \alpha \checkmark$ combining $M g \sin \theta=M a+\frac{I \alpha}{R} \checkmark$ substitution of $I=\frac{1}{2} M R^{2}$ and $\alpha=\frac{a}{R} \checkmark$ to get result ALTERNATIVE 2 $\begin{aligned} & M g h=\frac{1}{2} M v^{2}+\frac{1}{4} M v^{2} \text { «from } \frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right) \frac{v^{2}}{R^{2}}> \\ & v^{2}=\frac{4}{3} g h \checkmark \\ & v^{2}=2 a s=2 a \frac{h}{\sin \theta} \checkmark \end{aligned}$ manipulation to produce given answer \checkmark	Accept correct use of torques about point of contact.	4

Question			Answers	Notes	Total
8	b	ii	rearranging $s=\frac{1}{2} a t^{2}$ to get $t=\sqrt{\frac{2 s}{a}} \checkmark$ substitution to get $t=$ « $\sqrt{\frac{2 \times 1.5}{\frac{2}{3} \times 9.81 \times \frac{1}{2}}} \gg 0.96 \mathrm{~s}$		2
	c		acceleration of ice is $g \sin \theta$ whereas for the solid cylinder acceleration is two thirds of this «so speed of ice must always be greater at same point»	Allow answers in terms of energies, eg ice does not use energy to rotate and therefore will have a greater translational speed.	1
	d		the hollow cylinder has a greater moment of inertia \checkmark and hence a smaller acceleration		2

Question			Answers	Notes	Total
9	a	i	$1400 \mathrm{~K} \checkmark$		1
	a	ii	$\begin{aligned} & \frac{3}{2} P \Delta V=\frac{3}{2} \times 4 \times 10^{5} \times 3 \times 10^{-3} \\ & 1800 \mathrm{~J} \checkmark \end{aligned}$		2
	a	iii	$\begin{aligned} & 1800+P \Delta V=1800+4 \times 10^{5} \times 3 \times 10^{-3} \text { OR use of } \Delta Q=\frac{5}{2} P \Delta V \\ & 3000 \mathrm{~J} \checkmark \end{aligned}$		2
	a	iv	curve starting at A ending on line CB AND between B and zero pressure \checkmark		1
	b	i	$0 \checkmark$		1
	b	ii	ALTERNATIVE 1 C has the same volume as B OR entropy is related to disorder \checkmark higher temperature/pressure means greater disorder therefore entropy at C is greater «because entropy is related to disorder» ALTERNATIVE 2 to change from B to $C, \Delta Q>0 \checkmark$ so $\Delta S>0 \checkmark$ ΔS related to disorder \checkmark		3

Question			Answers	Notes	Total
10	a		$« 118+105 \mathrm{kPa}\rangle=2.23 \times 10^{5} \mathrm{~Pa} \checkmark$		1
	b		ALTERNATIVE 1 «from Bernoulli's Law» total pressure at $Q=$ static pressure + dynamic pressure $=$ constant « $2.2 \times 10^{5} \mathrm{~Pa}$ » \checkmark dynamic pressure $«=\frac{1}{2} \rho v^{2} »$ increases from zero, so static pressure decreases \checkmark ALTERNATIVE 2 water rushes out of tap at higher velocity, so pressure is lower \checkmark due to Bernoulli's Principle \checkmark		2
	c	i	$\begin{aligned} & R=\frac{1.27 \times 0.05 \times 1.00 \times 10^{3}}{1.8 \times 10^{-3}} \\ & R=3.5 \times 10^{4} \end{aligned}$	Allow use of diameter to give $R=7.0 \times 10^{4}$	2
	c	ii	flow is turbulent \checkmark	Answers in (c)(i) and (c)(ii) must be consistent.	1

Question		Answers	Total		
$\mathbf{1 1}$	\mathbf{a}	high Q means low damping OR system oscillates with low damping \checkmark «exponential» decrease of amplitude/energy OR oscillates about 200 times before coming to rest \checkmark loses about 3\% of energy per cycle OR loses small amount of energy each cycle \checkmark	Notes		
	\mathbf{b}	\mathbf{i}	large amplitude/resonance \checkmark		
	\mathbf{b}	$\mathbf{i i}$	small amplitude AND A «almost» in phase with P \checkmark	$\mathbf{1}$	

Option C - Imaging				
Question		Answers	Notes	Total
12	a	 one correct ray drawn another correct ray \downarrow image located at intersection of rays, behind the mirror	Label I is required.	3
	b	$\approx 0.4 \checkmark$		1
	c	image is in better focus/sharper $\boldsymbol{O R}$ parabolic do not suffer from spherical aberration \checkmark parabolic mirrors reflect parallel rays through one point \checkmark whereas spherical mirrors reflect parallel rays through different points \checkmark	Award $3^{\text {rd }}$ mark even if implied in the answer.	3

Question			Answers	Notes	Total
13	a		$\begin{aligned} & F_{\mathrm{o}}+f_{\mathrm{e}}=84 \text { so } f_{\mathrm{e}}=84-82=2 \mathrm{~cm} \\ & \text { «M }=\frac{f_{\mathrm{o}}}{f_{\mathrm{e}}}=\frac{82}{2}=» 41 \checkmark \end{aligned}$		2
	b		a sign convention is a way to distinguish between real and virtual objects or images or converging and diverging lenses \checkmark		1
	c	i	image will be virtual $v=-25 \mathrm{~cm} \checkmark$ $\begin{aligned} & \frac{1}{u}=\frac{1}{82}+\frac{1}{25} \checkmark \\ & «=19 \mathrm{~cm} \text { or } 0.19 \mathrm{~m} » \end{aligned}$	Award [1 max] if $v=+25 \mathrm{~cm}$ used to give $u=-36 \mathrm{~cm}$.	2
	c	ii	image will be real $v=84-19=65$ «cm» $\text { « } \frac{1}{u}=\frac{1}{2}-\frac{1}{65} » \text { so } u=2.1 \mathrm{~cm}$		2
	c	iii	$\begin{aligned} & M_{\mathrm{e}}=« \frac{D}{f_{\mathrm{e}}}+1=\frac{25}{82}+1 \Rightarrow 1.3 \text { AND } m_{\mathrm{o}}=« \frac{v}{f_{\mathrm{o}}}-1=\frac{65}{2}-1 \Rightarrow 31 \text { or } 32 \\ & \text { so } M=« M_{\mathrm{e}} m_{\mathrm{o}}=1.3 \times 31=» 40 \text { or } 41 \checkmark \end{aligned}$	Far point adjustment gives $M=9.3$ (accept answers from interval 9.3 to 9.6), award [1 max] for full working.	2

Question		Answers	Notes	Total
$\mathbf{1 4}$	a	curved, symmetrical path \checkmark	Refraction on entry not required and ignored in diagram for simplicity.	
	b	waveguide dispersion means that rays not parallel to the central axis take longer to transmit \checkmark in a graded-index fibre rays away from the central axis travel at a higher speed $\boldsymbol{O R}$ rays are «refracted» closer to the central axis $\mathbf{O R}$ effective diameter of the fibre is reduced \checkmark because refractive index is greater in the centre $\mathbf{O R}$ refractive index is less at the edge \checkmark		

15	a	i	$\mu=2.7 \times 10^{-3}\left(\pm 0.3 \times 10^{-3}\right)^{\checkmark}$ So $\left.\frac{I}{I_{0}}=« e^{-\mu x}=e^{-\left(2.7 \times 10^{-3} \times 8 \times 10^{-2}\right)}\right\rangle=0.9999 \approx 1.0 \checkmark$	2
	a	ii	« $\mu=50$ to give $\frac{I}{I_{0}}=1.8 \times 10^{-2} \checkmark$	1
	b		low energy radiation removed but not high energy radiation radiation has narrower range of energies \checkmark only necessary radiation reaches the patient making it safer \checkmark	2 max

Question			Answers	Notes	Total
16	a		Advantage: no ionizing radiation OR high res images of soft tissue OR 3D images \checkmark Disadvantage: «generally" more expensive $\mathbf{O R}$ takes much longer $\boldsymbol{O R}$ less detail of bony structures «than X-ray» OR noisy for patient OR claustrophobic for patient OR cannot be used for patients with metal implants \checkmark	Do not accept advantages that are also true of X-rays, eg non-invasive.	2
	b		a gradient field is added to a magnetic field that is originally uniform across patient \checkmark the gradient field varies linearly across patient as the protons relax a «radio frequency» signal is emitted \checkmark the emitted signal frequency is proportional to the total strength of the magnetic field \checkmark the signal frequency depends on the emission position in the patient		3 max

18	a	$\begin{aligned} & T=\frac{2.9 \times 10^{-3}}{740 \times 10^{-9}} \\ & 3900 \mathrm{~K} \checkmark \end{aligned}$	Answer must be to at least 2SF.	2
	b	$\begin{aligned} & L=5.67 \times 10^{-8} \times 4 \pi \times\left(3.1 \times 10^{10}\right)^{2} \times 4000^{4} \\ & =1.8 \times 10^{29} \mathrm{~W} \end{aligned}$	Accept use of 3900^{4} to give $1.6 \times 10^{29} \mathrm{~W}$	2
	c	absorption lines in spectra \checkmark are specific to particular elements	Accept "emission lines in spectra".	2
	d	helium \checkmark		1

| Question | | Answers | | Notal |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 8}$ | \mathbf{e} | helium flash \checkmark
 expansion of outer shell OR surface temperature increase \checkmark
 planetary nebula phase \checkmark
 only the core remains \checkmark
 if below $1.4 \mathrm{Ms} /$ Chandrasekhar limit then white dwarf \checkmark | | |

19	a	i	$z=\frac{\Delta \lambda}{\lambda_{0}}$ where $\Delta \lambda$ is the redshift of a wavelength and λ_{0} is the wavelength measured at rest on Earth $\boldsymbol{O R}$ it is a measure of cosmological redshift \checkmark	Do not allow just "redshift".	1
	a	ii	«z $=\frac{R}{R_{\circ}}-1, \frac{R_{0}}{R}=\frac{1}{z+1}$ 》 so $\frac{R_{0}}{R}=« \frac{1}{1.16} 》=0.86 \checkmark$	Do not accept answer 1.16.	1
	a	iii	$\begin{aligned} & v=z c=0.16 \times 3 \times 10^{8}=4.8 \times 10^{4} « \mathrm{~km} \mathrm{~s}^{-1} » \checkmark \\ & d=\frac{v}{H_{0}}=\frac{4.8 \times 10^{4}}{68}=706 \mathrm{Mpc} \text { OR } 2.2 \times 10^{25} \mathrm{~m} \end{aligned}$		2
	b		as the universe expanded it cooled/wavelength increased \checkmark the temperature dropped to the present approximate $3 \mathrm{~K} \mathbf{O R}$ wavelength stretched to the present approximate $1 \mathrm{~mm} \checkmark$	Value is required for MP2.	2

| Question | | Answers | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 0}$ | a | a gas cloud will collapse to form a star \checkmark
 if «the magnitude of» the gravitational potential energy of the particles is greater than the
 kinetic energy of the particles OR mass of the cloud is greater than the Jeans mass \checkmark | Notes |
| | \mathbf{b} | la have consistent maxima in their light curves but II vary \checkmark
 la has a strong ionized Sill line but II has hydrogen lines in their spectra \checkmark
 la was a white dwarf but II are massive stars \checkmark
 la form from binary systems but II are the result of core collapse of a star \checkmark
 la can be used as standard candles but II are not \checkmark | $\mathbf{3}$ |

Question			Answers	Notes	Total
21	a	i	curve beginning on $R=0$ before present time and ending after present time on $R=0 \checkmark$		1
	a	ii	curve starting earlier than C with general shape shown above \checkmark coincides with curve C at present time \checkmark	Judge by eye.	2

| Question | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 1}$ | \mathbf{b} | rotation speeds of galaxies is greater at the edges than expected \checkmark
 so the density at the edges must be greater than that supplied by luminous matter
 alone \checkmark | Accept any other valid piece
 of evidence, eg gravitational
 lensing, which provides a
 good measure of galactic
 cluster masses. |

